The Science of Term Structure Models是FRM二級考試中的重要內容,考生在備考中一定要對相關的內容提前了解,這樣對于自己日后的備考也是很有幫助的!今天,小編為大家介紹一下The Science of Term Structure Models中考生能學到什么?希望對備考的你有做幫助!》》》2021年新版FRM一二級內部資料免 費領取!【精華版】

After completing this reading, you should be able to:

? Calculate the expected discounted value of a zero-coupon security using a binomial tree.

? Construct and apply an arbitrage argument to price a call option on a zero-coupon security using replicating portfolios.

? Define risk-neutral pricing and apply it to option pricing.

? Distinguish between true and risk-neutral probabilities and apply this difference to interest rate drift.

? Explain how the principles of arbitrage pricing of derivatives on fixed income securities can be extended over multiple periods. 》》》點我咨詢21年FRM備考技巧

? Define option-adjusted spread (OAS) and apply it to security pricing.

? Describe the rationale behind the use of recombining trees in option pricing.

? Calculate the value of a constant maturity Treasury swap, given an interest rate tree and the risk-neutral probabilities.

? Evaluate the advantages and disadvantages of reducing the size of the time steps on the pricing of derivativeson fixed-income securities.

? Evaluate the appropriateness of the Black-Scholes-Merton model when valuing derivatives on fixed income securities.

譯文:完成閱讀后,您應該能夠:

?使用二叉樹計算零息票證券的預期貼現價值。

?構造并應用套利論據,使用復制投資組合對零息票證券的看漲期權定價。

?定義風險中性定價并將其應用于期權定價。

?區分真實概率和風險中性概率,并將此差異應用于利率漂移。

?解釋如何將固定收益證券衍生品的套利定價原則擴展到多個時期。

?定義期權調整價差(OAS)并將其應用于證券定價。

?描述在期權定價中使用重組樹的基本原理。【資料下載】點擊下載FRM二級思維導圖PDF版

?在給定利率樹和風險中性概率的情況下,計算固定期限國債掉期的價值。

?評估減少固定收益證券衍生品定價時間步長的利弊。

?評估布萊克-斯科爾斯-默頓模型在固定收益證券衍生品估值時的適當性。

希望以上的內容對你有所幫助!如果您想了解更多FRM考試相關問題,添加融躍FRM老師微信(rongyuejiaoyu),給您專業的指導幫助!